FORECASTING FORECASTING | Galih Nur .edu

September 21, 2017 | Author: Anonymous | Category: Documents
Share Embed


Short Description

Data runtut waktu (time series) merupakan data yang dikumpulkan, p , dicatat,, atau diobservasi sepanjang p j g waktu se...

Description

FORECASTING DR. MOHAMMAD ABDUL MUKHYI, SE., MM

6/3/2008

1

Apa Arti Runtut Waktu? • Data runtut waktu (time series) merupakan data yang dikumpulkan, p , dicatat,, atau diobservasi sepanjang p j g waktu secara berurutan • Periode waktu dapat tahun, kuartal, bulan, minggu, dan dibeberapa kasus hari atau jam. jam • Runtut waktu dianalisis untuk menemukan pola yang g dapat p dipergunakan p g untuk: variasi masa lalu y (1) memprakirakan nilai masa depan dan membantu dalam manajemen operasi bisnis; (2) membuat perencanaan bahan baku, fasilitas produksi, dan jumlah staf guna memenuhi permintaan pe taa d dimasa asa mendatang. e data g 6/3/2008

2

Mengapa g p Mempelajari p j Analisis Runtut Waktu? Karena dengan K d mengamati ti data d t runtut t t waktu kt akan k terlihat empat komponen yang mempengaruhi suatu pola data masa lalu dan sekarang, yang cenderung berulang dimasa mendatang

6/3/2008

3

Teknik Forecasting Pendekatan Basis

Teknik

Hasil

Peramalan ekstrapolatif

Ekstrapolasi trend

Analisis rangkaian-waktu Teknik benang-hitam Teknik OLS Pembobotan eksponensial Transformasi data Metode katastrofi

Projeksi

Peramalan Teoretis

Teori

Pemetaan teori Analisis jalur Analisis Input Input-Output Output Pemrograman linier Analisis regresi Estimasi interval Analisis hubungan

Prediksi

Peramalan intuitif

Penilaian subjektif

Delphi konvensional Delphi kebijakan Analisis dampak-silang Penilaian kelayakan

Konjektur

6/3/2008

4

Asumsi Peramalan Ekstrapolatif 1. Keajegan (persistence): Pola yang terjadi di masa lalu akan tetap terjadi di masa mendatang. Mis: jika konsumsi energi di masa lalu meningkat, ia akan selalu meningkat di masa depan. 2 Keteraturan (regularity): Variasi di masa lalu 2. akan secara teratur muncul di masa depan. Mis: jika banjir besar di Jakarta terjadi setiap 16 tah tahun n sekali, sekali pola yg g sama akan terjadi lagi lagi. 3. Keandalan (reliability) dan kesahihan (validity) data: Ketepatan p ramalan tergantung g g kepada p keandalan dan kesahihan data yg tersedia. Mis: data ttg laporan kejahatan seringkali tidak sesuai dg insiden kejahatan yg sesungguhnya, data ttg gaji bukan merupakan ukuran tepat 6/3/2008 5 dari pendapatan masyarakat.

Klasifikasi Metode Peramalan … Forecasting Method Subjective (Judgmental) Forecasting Methods

Objective Forecasting Methods Time Series M th d Methods

Causal Methods M th d

Analogies

Naïve Methods

Simple Regression

Moving Averages

Multiple Regression

Exponential Smoothing

Neural Networks

Delphi PERT

Simple Regression

Survey techniques

ARIMA Neural Networks

References : Combination of Time Series – Causal Methods    

6/3/2008

Intervention Model Transfer Function (ARIMAX) VARIMA (VARIMAX) Neural Networks

   

Makridakis et al. Hanke and Reitsch Wei, W.W.S. B Box, JJenkins ki and d Reinsel R i l

6

Ilustrasi M d l Matematis Model M i …

Klasifikasi Metode Peramalan :

Forecasting Method

Objective Subjective (Judgmental) Examples : sales l = f (price ( i , advert d t , …)) Forecasting Methods Forecasting Methods Examples : sales l (t) = f (sales ( l (t-1), sales l (t-2), …))

(t)

(t)

(t)

Combination of Time Series – Causal Methods Yt= f (Yt-j , j>0 ; Xt-i , i 0)

Examples : Time Series Methods Causal Methods , advert , advert , …) ¨ sales = f (sales (t)

Yt= f (Yt-1, Yt-2, … , Yt-k) 6/3/2008

(t-1)

(t)

(t-1)

Yt= f (X1t, X2t, … , Xkt) 7

Klasifikasi Model Time Series : Berdasarkan B MODELS Bentuk t k atau t Fungsi F i… TIME SERIES LINEAR Time Series Models

NONLINEAR Time Series Models

ARIMA Box-Jenkins

Models from time series theory nonlinear autoregressive, etc ...

Intervention Model

Flexible statistical parametric models neural network model, etc ...

Transfer Function (ARIMAX)

State-dependent, time-varying parameter and long-memory models

VARIMA (VARIMAX)

References :  Timo Terasvirta, Dag Tjostheim and Clive W.J. Granger, (1994) “Aspects of Modelling Nonlinear Time Series”

6/3/2008 Handbook of Econometrics, Volume IV, Chapter 48. Edited by R.F. Engle and D.I. McFadden

Nonparametric models

Models from economic theory

8

6/3/2008

9

6/3/2008

10

6/3/2008

11

6/3/2008

12

6/3/2008

13

MODEL O PERAMALAN RUNTUT U U WAKTU U DENGAN ATAU TANPA TREN RUNTUT U U WKATU U EXPONENTIAL SMOOTING MENGANDUNG UNSUR TREND

TIDAK

MOVING AVERAGE

YA

TREND LINEAR

6/3/2008

TREND KUADRATIK

TREND EKSPONENSIAL

MODEL AUTOREGRESIF

14

Empat komponen yang ditemukan dalam analisis runtut waktu adalah: 1. Trend, yaitu komponen jangka panjang yang mendasari p pertumbuhan ((atau p penurunan)) suatu data runtut waktu. 2. Siklikal (cyclical), yaitu suatu pola fluktuasi atau siklus dari data runtut waktu akibat perubahan kondisi ekonomi. 3. Musiman (seasonal), yaitu fluktuasi musiman yang sering i dijumpai dij i pada d data d t kuartalan, k t l b l bulanan atau t mingguan. 4. Tak beraturan (irregular), yaitu pola acak yang disebabkan oleh peristiwa yang tidak dapat diprediksi atau tidak beraturan, seperti perang, pemogokan, pemilu,, atau longsor p g maupun p bencana alam lainnya y 6/3/2008

15

General of Time Series Patterns … Time Series S Patterns

Stationer

9 Nonseasonal Stationaryy models

6/3/2008

Trend Effect

Seasonal Effect

9 Nonseasonal Nonstationaryy models

9 Seasonal and p models Multiplicative

Cyclic Effect

9 Intervention models

16

Time Series Analysis Deret berkala adalah suatu pengamatan atas suatu kumpulan variabel kuantitatif dari waktu ke waktu. waktu Contoh • angka indeks rata-rata industri Dow Jones • data historis penjualan, penjualan persediaan, persediaan jumlah pelanggan, pelanggan tingkat bunga, biaya-biaya, dan lain-lain Dunia Bisnis sangat tertarik akan peramalan dengan mengunakan variabel berkala Sering, bahwa variabel independen adalah tidak tersedia untuk membangun model regresi dari variabel deret berkala Dalam analisis deret berkala, kita meneliti perilaku dari suatu variabel masa lalu dalam rangka meramalkan perilakunya.masa depan 6/3/2008 17

Pola data General Time Series “PATTERN” ƒ Stationer St ti ƒ Trend (linear or nonlinear) ƒ Seasonal (additive or multiplicative) ƒ Cyclic ƒ Calendar Variation

6/3/2008

18

Pendekatan Analisis Deret Berkala Ada banyak teknik deret berkala. I i biasanya Ini bi mungkin ki untuk t k mengetahui t h i teknik t k ik mana yang terbaik untuk data tertentu. Biasanya mencoba beberapa teknik berbeda dan memilih salah satu terbaik. Untuk menjadi suatu model deret berkala yang efektif, ini harus menyediakan beberapa teknikderet berkala di dalam “ tool box.”

6/3/2008

19

Measuring Accuracy • We need a way to compare different time series techniques for a given data set. • Four common techniques are the:



$ Yi − Y i n

n

Yi − Yˆi

n

– mean absolute deviation,

MAD =

i =1 =1

100 – mean absolute percent error, MAPE = ∑ n i =1

Yi

2 $ Yi − Yi ) ( MSE = ∑ n i =1 n

– the mean square error, – root mean square error. 6/3/2008

RMSE =

MSE

We will focus on the MSE.

20

Extrapolation Models • Extrapolation models try to account for the past behavior of a time series variable in an effort to predict di t th the ffuture t behavior b h i off th the variable. i bl

$ = f (Y , Y , Y ,K) Y t +1 t t −1 t −2 ƒ We’ll ’ll first f talk lk about b severall extrapolation l techniques that are appropriate for stationary data.

6/3/2008

21

An Example • Hasil produksi padi Indonesia dari tahun 1970 sampai tahun 2008 sampai bulan Mei. • Hasil produksi ini berdasarkan musiman • Ada 39 tahun

6/3/2008

22

tahun 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 6/3/2008

produksi padi 18 693 649 18.693.649 20.483.687 19.393.933 21.490.578 22.476.073 22.339.455 23.300.939 23.347.132 25.771.570 26.282.663 29.651.905 32 774 176 32.774.176 33.583.677 35.303.106 38.136.446 39 032 945 39.032.945 39.726.761 40.078.195 41.676.170 44.725.582

tahun 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

produksi padi 45 178 751 45.178.751 44.688.247 48.240.009 48.181.087 46.641.524 49.744.140 51.101.506 49.377.054 49.236.692 50.866.387 51.898.852 50 460 782 50.460.782 51.489.694 52.137.604 54.088.468 54 151 097 54.151.097 54.454.937 57.051.679 58.268.796 23

6/3/2008

24

Moving Averages Y + Y + Y t t-1 t- k +1 $ Yt +11 = k ƒ No general method exists for determining k. ƒ We must try out several k values to see what works best.

6/3/2008

25

Implementing the Model

6/3/2008

26

A Comment on Comparing MSE Values • Care should be taken when comparing MSE values of two different forecasting techniques. techniques • The lowest MSE may result from a technique that fits older values very well but fits recent values poorly. • It is sometimes wise to compute the MSE using only the most recent values.

6/3/2008

27

Forecasting With The Moving Average Model Forecasts for time periods 25 and 26 at time period 24:

Y24 + Y23 36 + 35 $ Y25 = = = 355 . 2 2 $ +Y Y 35 5 + 36 35.5 25 24 $ Y26 = = = 35.75 2 2

6/3/2008

28

Weighted Moving Average • The moving average technique assigns equal weight to all previous observations 1 1 1 $ Yt +1 = Yt + Yt-1 +L+ Yt- k -1 k k k ƒ The weighted moving average technique allows for different weights to be assigned to previous observations. b ti $ = w Y + w Y +L+ w Y Y t +1 1 t 2 t-1 k t- k -1 where h 0 ≤ wi ≤ 1 and d

∑w

i

=1

ƒ We must determine values for k and the wi 6/3/2008

29

Forecasting With The Weighted Moving Average Model Forecasts for time p periods 25 5 and 26 6 at time p period 24:

Yˆ25 = w1Y24 + w2 Y23 = 0.291× 36 + 0.709 × 35 = 35.29 Yˆ26 = w1Yˆ25 + w2 Y24 = 0.291× 35.29 + 0.709 × 36 = 35.79

6/3/2008

30

Exponential Smoothing $ =Y $ + α (Y − Y $ ) Y t +1 t t t where 0 ≤ α ≤ 1 ƒ It can be shown that the above equation is equivalent to:

$ = αY + α (1 − α ) Y + α (1 − α ) 2 Y +L+ α (1 − α ) n Y +L Y t +1 t t −1 t −2 t −n

6/3/2008

31

Examples of Two Exponential Smoothing Functions 42 40

Un nits Sold

38 36 34 32 Number of VCRs Sold Exp. Smoothing alpha=0.1

30

Exp. Smoothing alpha=0.9

28 1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Time Period 6/3/2008

32

Implementing the Model

6/3/2008

33

Forecasting With The Exponential Smoothing Model Forecasts for time p periods 25 and 26 at time p period 24: ˆ =Y ˆ + α (Y − Y ˆ ) = 35.74 + 0.268(36 − 35.74) = 35.81 Y 25 24 24 24 ˆ =Y ˆ + α (Y − Y ˆ )≈Y ˆ + α (Y ˆ −Y ˆ )=Y ˆ = 35.81 Y 26 25 25 25 25 25 25 25

Note that,

$ = 35.81, for t = 25, 26, 27, K Y t

6/3/2008

34

6/3/2008

35

Seasonality • Seasonality is a regular, repeating pattern in time series data. • May y be additive or multiplicative p in nature...

6/3/2008

36

Stationary Seasonal Effects Additive S easonal Effects

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

18

19

20

21

22

23

24

25

Tim e Pe r iod

Multiplicative S easonal E ffects

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

T im e Pe r io d

6/3/2008

37

Stationaryy Data With Additive Seasonal Effects where

ˆ Y t + n = E t + St + n − p

E t = α (Yt - St-p ) + (1- α )Et −1

St = β (Yt - E t ) + (1- β )St − p 0 ≤α ≤1 0 ≤ β ≤1 p represents the number of seasonal periods

• Et is the expected level at time period t. • St iis the th seasonall factor f t for f time ti period i d t. t 6/3/2008

38

Implementing the Model

6/3/2008

39

Forecasting With The Additive Seasonal Effects Model Forecasts for time p periods 25 to 28 at time p period 24:

ˆ Y 24+ n = E 24 + S24+ n − 4 ˆ = E + S = 354.44 + 8.45 = 363.00 Y 25 24 21 ˆ = E + S = 354.44 − 17.82 = 336.73 Y 26

24

22

ˆ = E + S = 354.44 + 46.58 = 401.13 Y 27 24 23 ˆ = E + S = 354.44 − 31.73 = 322.81 Y 28 24 24 6/3/2008

40

Stationaryy Data With Multiplicative Seasonal Effects where

ˆ Y t + n = E t × St + n − p

E t = α (Yt /Stt-pp ) + ((1- α ))Et −1

St = β (Yt /E t ) + (1- β )St − p 0 ≤α ≤1 0 ≤ β ≤1 p represents the number of seasonal periods

• Et is the expected level at time period t. • St is the seasonal factor for time period t. 6/3/2008

41

Forecasting With The Multiplicative Seasonal Effects Model Forecasts for time periods 25 to 28 at time period 24:

ˆ Y 24+ n = E 24 × S 24+ n − 4 ˆ = E × S = 353.95 ×1.015 = 359.13 Y 25 24 21 ˆ = E × S = 354.44 × 0.946 = 334.94 Y 26 24 22 ˆ = E × S = 354.44 ×1.133 = 400.99 Y 27 24 23 ˆ = E × S = 354.44 × 0.912 = 322.95 Y 28 24 24 6/3/2008

42

Trend Models • Trend is the long-term sweep or general direction of movement in a time series. • We’ll now consider some nonstationary time series techniques that are appropriate for data exhibiting upward or downward trends.

6/3/2008

43

An Example p • WaterCraft Inc. is a manufacturer of personal water crafts (also known as jet skis) skis). • The company has enjoyed a fairly steady growth in sales of its products products. • The officers of the company are preparing sales and a d manufacturing a u actu g p plans a s for o tthe e co coming g yea year. • Forecasts are needed of the level of sales that the company p y expects p to achieve each q quarter. • See file

6/3/2008

44

Double Moving g Average g ˆ Y t + n = E t + nTt where

E t = 2M t − D t Tt = 2(M t − D t ) /(k − 1) M t = (Yt + Yt −1 + L + Yt − k +1) / k D t = (Mt + Mt −1 + L + Mt − k +1) / k

• Et is the expected base level at time period t. • Tt is the expected trend at time period t. 6/3/2008

45

Forecasting With The Double Moving Average Model Forecasts for time p periods 21 to 24 at time p period 20:

ˆ Y 20+ n = E 20 + nT20 ˆ = E + 1T = 2385.33 + 1×139.9 = 2525.23 Y 21 20 20 ˆ = E + 2T = 2385.33 + 2 × 139.9 = 2665.13 Y 22 20 20 ˆ = E + 3T = 2385.33 + 3 ×139.9 = 2805.03 Y 23 20 20 ˆ = E + 4T = 2385.33 + 4 × 139.9 = 2944.94 Y 24 20 20 6/3/2008

46

Double Exponential Smoothing (Holt’s (Holt s Method) ˆ Y Tt t + n = E t + nT where Et = αYt + (1-α)(Et-1+ Tt-1) Tt = β(Et −Et-1) + (1-β) Tt-1 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1

• Et is the expected base level at time period t. t • Tt is the expected trend at time period t. 6/3/2008

47

Forecasting g With Holt’s Model Forecasts for time periods 21 to 24 at time period 20:

ˆ Y 20+ n = E 20 + nT20

$ = E + 1T = 2336.8 + 1 × 152.1 = 2488.9 Y 21 20 20 $ = E + 2T = 2336.8 + 2 × 152.1 = 2641.0 Y 22 20 20 $ = E + 3T = 2336.8 + 3 × 152.1 = 27931 Y . 23

20

20

$ = E + 4T = 2336.8 + 4 × 152.1 = 2945.2 Y 24 20 20

6/3/2008

48

Holt-Winter’s Method For Additive Seasonal Effects Yˆt + n = E t + nTt + St + n − p where

(

)

E t = α Yt − St − p + (1- α )(Et −1 + Tt −1 )

Tt = β (E t − E t −1 ) + (1 - β )Tt −1 St = γ (Yt − E t ) + (1- γ )St − p 0 ≤α ≤1 0 ≤ β ≤1 0 ≤ γ ≤1

6/3/2008

49

Forecasting With Holt-Winter’s Additive Seasonal Effects Method Forecasts for time periods 21 to 24 at time period 20:

Yˆ20+ n = E 20 + nT20 + S20+ n −4 ˆ = E + 1× T + S = 2253.3 + 1× 154.3 + 262.66 = 2670.3 Y 21 20 20 17 ˆ = E + 2 × T + S = 2253.3 + 2 ×154.3 − 312.59 = 2249.3 Y 22 20 20 18 ˆ = E + 3 × T + S = 2253.3 + 3 ×154.3 + 205.40 = 2921.6 Y 23 20 20 19 ˆ = E + 4 × T + S = 2253.3 + 4 × 154.3 + 386.12 = 3256.6 Y 24 20 20 20

6/3/2008

50

Holt-Winter’s Method For M ltiplicati e Seasonal Effects Multiplicative Yˆt + n = (E t + nTt )St + n − p where

(

)

E t = α Yt / St − p + (1- α )(Et −1 + Tt −1 )

Tt = β (E t − E t −1 ) + ((1 - β ))Tt −1 St = γ (Yt / E t ) + (1- γ )St − p 0 ≤α ≤1 0 ≤ β ≤1 0 ≤ γ ≤1 6/3/2008

51

Forecasting With Holt-Winter’s Multiplicative Seasonal Effects Method Forecasts for time p periods 21 to 24 at time period p 20:

Yˆ20+ n = (E 20 + nT20 ) S20+ n −4 ˆ = (E + 1T ) S = (2217.6 + 1×137.3)1.152 = 2713.7 Y 21 20 20 17 ˆ = (E + 2T ) S = (2217.6 + 2 ×137.3)0.849 = 2114.9 Y 22 20 20 18 ˆ = (E + 3T ) S = (2217.6 + 3 ×137.3)1.103 = 2900.5 Y 23 20 20 19 ˆ = (E + 4T ) S = (2217.6 + 4 ×137.3)1.190 = 3293.9 Y 24 20 20 20 6/3/2008

52

The Linear Trend Model

Y$ t = b0 + b1X1t where X1t = t For example: X11 = 1, X12 = 2, X13 = 3, K

6/3/2008

53

Forecasting With Th Li The Linear T Trend dM Model d l Forecasts for time periods 21 to 24 at time period 20: $ = b + b X = 3751 Y . + 92.6255 × 21 = 2320.3 21 0 1 121 $ = b + b X = 3751 Y . + 92.6255 × 22 = 2412.9 22 0 1 122 $ = b + b X = 3751 Y . + 92.6255 × 23 = 2505.6 23 0 1 123 $ = b + b X = 3751 Y . + 92.6255 × 24 = 2598.2 24 0 1 124

6/3/2008

54

The TREND() Function TREND(Y-range, X-range, X-value for prediction) where: Y range is the spreadsheet range containing the dependent Y-range Y variable, X-range is the spreadsheet range containing the independent X variable(s), X-value for prediction is a cell (or cells) containing the values for the independent p X variable(s) ( ) for which we want an estimated value of Y. Note: The TREND( ) function is dynamically updated whenever any inputs to the function change. However, it does not provide the statistical information provided by the regression tool. It is best two use these two different approaches to doing regression in conjunction with one another. 6/3/2008

55

The Quadratic Trend Model

$ = b +b X +b X Y t 0 1 1t 2 2t where X1t = t and X 2t = t 2

6/3/2008

56

Forecasting With The Quadratic Trend Model Forecasts for time periods 21 to 24 at time period 20: 2 ˆ = b +b X +b X Y 21 0 1 12 1 2 2 2 1 = 653 .67 + 16 .671 × 21 + 3.617 × 21 = 2598 .9 2 ˆ = b +b X +b X Y = 653 . 67 + 16 . 671 × 22 + 3 . 617 × 22 = 2771 .1 22 0 1 12 2 2 22 2 2 ˆ = b +b X +b X Y = 653 . 67 + 16 . 671 × 23 + 3 . 617 × 23 = 2950 .4 23 0 1 12 3 2 22 3 2 ˆ = b +b X +b X Y = 653 . 67 + 16 . 671 × 24 + 3 . 617 × 24 = 3137 .1 24 0 1 12 4 2 22 4

6/3/2008

57

Computing Multiplicative Seasonal Indices • We can compute multiplicative seasonal adjustment indices for period p as follows:

Yi ∑i Y$ i , for all i occuring Sp = g in season p np ƒ The final forecast for period i is then

$ adjusted = Y $ × S , for any i occuring in season p Y i i p 6/3/2008

58

Forecasting With Seasonal Factors Applied To The Quadratic Trend Model Forecasts for time periods 21 to 24 at time period 20: ˆ = (b + b X + b X ) S = 2598 .9 × 105 .7% = 2747 .8 Y 21 0 1 12 1 2 22 1 1 ˆ = (b + b X + b X ) S = 2771 .1 × 80 .1% = 2219 .6 Y 22 0 1 12 2 2 22 2 2 ˆ = (b + b X + b X ) S = 2950 .5 × 103 .1% = 3041 .4 Y 23 0 1 12 3 2 22 3 3

ˆ = (b + b X + b X ) S = 3137 .2 × 111 .1% = 3486 .1 Y 24 0 1 12 4 2 22 4 4

6/3/2008

59

Summary of the Calculation and Use of Seasonal Indices 1. Create a trend model and calculate the estimated ˆ ) for each observation in the sample. value ( Y t 2. For each observation, calculate the ratio of the actual ˆ . value to the predicted trend value: Yt / Y t ˆ ). (For additive effects, compute the difference: Y − Y t

t

3. For each season, compute the average of the ratios calculated in step 2. These are the seasonal indices. 4. Multiply any forecast produced by the trend model by the appropriate seasonal index calculated in step 3. (For additive seasonal effects, add the appropriate factor to the forecast forecast.)) 6/3/2008

60

Refining e g tthe e Seaso Seasonal a Indices d ces • Note that Solver can be used to simultaneously determine the optimal values of the seasonal indices and the parameters of the trend model being used. • There is no guarantee that this will produce a better forecast,, but it should produce p a model that fits the data better in terms of the MSE. See file Fig11-39.xls

6/3/2008

61

Seasonal Regression Models • Indicator variables may also be used in regression models to represent seasonal effects. • If there are p seasons, seasons we need p -1 1 indicator variables. ƒ Our example problem involves quarterly data, data so p=4 and we define the following 3 indicator variables: ⎧1, if Yt is an observation from quarter 1 X 3t = ⎨ ⎩0, otherwise ⎧1, if Yt is an observation from quarter 2 X 4t = ⎨ ⎩0, otherwise ⎧1, if Yt is an observation from quarter 3 X 5t = ⎨ th i ⎩0, otherwise 6/3/2008

62

Implementing the Model • The regression function is: $ = b +b X +b X +b X +b X +b X Y t 0 1 1t 2 2t 3 3t 4 4t 5 5t where X1t = t and X 2t = t 2

See file Fig11-42.xls

6/3/2008

63

Forecasting With The S Seasonal lR Regression i M Model d l Forecasts for time periods 21 to 24 at time period 20: Yˆ21 = 824.471+ 17.319(21) + 3.485(21) 2 − 86.805(1) − 424.736(0) − 123.453(0) = 2638.5 Yˆ 22 = 824.471+ 17.319(22) + 3.485(22) 2 − 86.805(0) − 424.736(1) − 123.453(0) = 2467.7 Yˆ23 = 824.471+ 17.319(23) + 3.485(23) 2 − 86.805(0) − 424.736(0) − 123.453(1) = 2943.2 Yˆ24 = 824.471+ 17.319(24) + 3.485(24) 2 − 86.805(0) − 424.736(0) − 123.453(0) = 3247.8

6/3/2008

64

StatTools • StatTools is an add-in add in that simplifies the process of performing time series analysis in Excel. • A trial version of StatTools is available on p y g this book. the CD-ROM accompanying • For more information on StatTools see: http://www.palisade.com

6/3/2008

65

Combining Forecasts • It is also possible to combine forecasts to create a composite forecast. • Suppose we used three different forecasting methods on a given data set. ƒ Denote the predicted value of time period t using each method as follows:

F1t , F2t , and F3t ƒ We could create a composite forecast as follows:

$ = b +b F +b F +b F Y t 0 1 1t 2 2t 3 3t 6/3/2008

66

ARIMA Model: Produksi padi ARIMA model for Produksi padi Estimates at each iteration Iteration SSE Parameters 0 451374984309793 0,100 0,100 0,100 0,100 1 368364447306473 0,021 0,199 0,250 0,152 2 325456920491419 -0,129 0,154 0,348 0,186 3 285571989081979 -0,279 0,118 0,475 0,229 4 245711224167492 -0,324 0,193 0,542 0,187 5 187899115792845 -0,474 0,260 0,657 0,041 6 155112700780088 -0,527 0,353 0,704 -0,109 7 141714161123773 -0,447 0 447 0 0,503 503 0 0,647 647 -0,201 0 201 8 129630495049884 -0,368 0,653 0,585 -0,287 9 117486920579732 -0,301 0,803 0,523 -0,376 10 101549593049237 -0,291 0,953 0,498 -0,503 11 87502739697009 -0,393 1,051 0,567 -0,653 , 1,076 , 0,614 , -0,708 , 12 81737678770148 -0,543 13 79314052359269 -0,619 1,074 0,596 -0,687 14 79233477547537 -0,622 1,073 0,587 -0,677 15 79162421478230 -0,620 1,072 0,581 -0,671 16 79124151604006 -0,619 1,071 0,577 -0,667 17 79104368397552 -0,619 1,071 0,576 -0,665 18 79092164140468 -0,619 1,070 0,575 -0,664 19 79085747120700 -0,620 1,070 0,575 -0,664 Relative change in each estimate less than 0,0010

6/3/2008

67

Final Estimates of Parameters Type Coef SE Coef T AR 1 -0,6197 0,1611 -3,85 MA 1 1,0698 0,0298 35,85 MA 2 0,5753 0,1894 3,04 MA 3 -0,6641 0,6641 0,1882 -3,53 3,53

P 0,001 0,000 0,005 0,001

Differencing: 3 regular differences Number of observations: Original series 39, after differencing 36 Residuals: es dua s SS = 70758139198041 0 58 39 980 (bac (backforecasts o ecasts e excluded) c uded) MS = 2211191849939 DF = 32 Modified Box-Pierce (Ljung-Box) Chi-Square statistic Lag g 12 24 36 48 Chi-Square 20,9 38,4 * * DF 8 20 * * P-Value 0,008 0,008 * *

6/3/2008

68

Model-model Time Series Regression g

1. Model Regresi untuk LINEAR TREND Yt = a + b.t + error

Ö t = 1, 2, … (dummy waktu)

2. Model Regresi untuk Data SEASONAL (variasi konstan) Yt = a + b1 D1 + … + bS-1 DS-1 + error dengan : D1, D2, …, DS-1 S 1 adalah dummy waktu dalam satu periode seasonal.

3. Model Regresi untuk Data dengan LINEAR TREND dan SEASONAL (variasi konstan) Yt = a + b.t + c1 D1 + … + cS-1 DS-1 + error  Gabungan model 1 dan 2. 6/3/2008

69

Naïve Model

³ The recent periods are the best predictors of the future. 1. The simplest model for stationary data is

Yˆt +1 = Yt 2. The simplest model for trend data is

Yˆt +1 = Yt + (Yt − Yt −1 ) or Yt ˆ Yt +1 = Yt Yt −1 3. The simplest model for seasonal data is

Yˆt +1 = Y(t +1) − s 6/3/2008

70

Average Methods

1. Simple Averages ³ obtained by finding the mean for all the relevant values and then using g this mean to forecast the next period. p n

Yt ˆ Yt +1 = ∑ t =1 n

for stationary data

2. Moving Averages ³ obtained by finding the mean for a specified set of values and then using this mean to forecast the next period period.

(Y + Yt −1 + K + Yt − n +1 ) M t = Yˆt +1 = t n 6/3/2008

for stationary data

71

Average Methods …

(continued)

3. Double Moving Averages ³ one set of moving averages is computed, and then a second set is computed as a moving average of the first set.

(Y + Yt −1 + K + Yt − n +1 ) M t = Yˆt +1 = t n ( M t + M t −1 + K + M t − n +1 ) (ii) M t′ = (ii). n (i).

(iii). at = 2M t − M t′ (iv). bt =

2 ( M t − M t′ ) n −1

Yˆt + p = at + bt p 6/3/2008

f for a linear trend data li t dd t 72

Exponential Smoothing Methods 9 Single Exponential Smoothing

Ö for stationary data

Yˆt +1 = αYt + (1 − α )Yˆt 9 Exponential Smoothing Adjusted for Trend : Holt’s Method 1. The exponentially smoothed series : At = α Yt + (1−α) (At-1+ Tt-1) 2. The trend estimate : Tt = β (At − At-1) + (1 − β) Tt-1 3. Forecast p periods into the future :

Yˆt + p = At + pTt 6/3/2008

73

Exponential Smoothing Adjusted for Trend and Seasonal Variation : Winter’s Method

1. The exponentially smoothed series : Y At = α t + (1 − α ) ( At −1 + Tt −1) St − L 2. The trend estimate : Tt = β ( At − At −1) + (1 − β )Tt −1

3. The seasonality estimate :

Three  p parameters  models

Y St = γ t + (1 − γ ) St −1 At 4. Forecast p periods into the future : Yˆt + p = ( At − pTt ) St − L + p 6/3/2008

74

View more...

Comments

Copyright © 2017 DATENPDF Inc.