Teknologi eksplorasi pertambangan - Pemetaan Eksplorasi | achmad ...

December 6, 2016 | Author: Anonymous | Category: Documents
Share Embed


Short Description

Teknologi eksplorasi pertambangan - Pemetaan Eksplorasi Ket. gambar: Tipikal endapan bedded manganese and tambang artisa...

Description

Teknologi eksplorasi pertambangan Pemetaan Eksplorasi Ket. gambar: Tipikal endapan bedded manganese and tambang artisanal di NTT

Agenda

Arie Naftali Hawu Hede, ST., MT., Ph.D. KK – Eksplorasi Sumberdaya Bumi Teknik Pertambangan Fakultas Teknik Pertambangan dan Perminyakan Institut Teknologi Bandung E-mail: [email protected]

Pendahuluan dan tantangan eksplorasi Pengenalan remote sensing Optikal remote sensing dan aplikasinya untuk eksplorasi mineral Microwave remote sensing dan aplikasinya LiDAR

“Industrial, technological, and economic developments depend on the availability of metallic raw materials” Douce, A.E.P. (2015) Metallic mineral resources in the 21st century. Natural Resources Research. Perkiraan kebutuhan sumberdaya mineral di masa depan • Proyeksi kumulatif kebutuhan metal masa depan, relatif kepada produksi total tambang tahun 1900-2012. • Pada 80-90 tahun kedepan kemungkinan kebutuhan metal mengalami peningkatan sekitar 10 kali dari total yang sudah ditambang dari tahun 1900.

Konsekuensi logis:

1. 2.

More exploration Better technology

3.

Reclassification of sub-economic resources to reserve

Pendapatan pemerintah

Lapangan kerja

Perkembangan Sumber ekonomi & energi teknologi

Akses, air & lingkungan

Berdasarkan pada sifat-sifat endapan, metoda penyelidikan dan pendekatanpendekatan teknologi yang digunakan, metoda eksplorasi secara umum dapat dibedakan menjadi 2 (dua): Eksplorasi Tak Langsung Kegiatan umum

Tidak berhubungan (kontak) langsung dengan objek yang dieksplorasi

Prinsip pekerjaan

Memanfaatkan sifat-sifat fisik/kimia dari endapan

Identifikasi Metoda Tahapan eksplorasi Teknologi Biaya Waktu

Melalui anomali-anomali yang diperoleh dari hasil pengamatan/pengukuran Penginderaan jarak jauh, survei geokimia, survei geofisika Digunakan pada tahapan Reconnaissance (Eksplorasi Pendahuluan) s/d Prospeksi Membutuhkan peralatan (teknologi) relatif tinggi Biaya per satuan luas murah Relatif cepat

Eksplorasi Langsung Langsung berhubungan (kontak) dengan objek yang dieksplorasi Melakukan pengamatan/penyelidikan secara langsung terhadap terhadap endapan secara fisik Melakukan analisis megaskopis dan mikroskopis terhadap objek penyelidikan Pemetaan, uji sumur, uji parit, pemboran Digunakan pada tahapan Prospeksi  Finding (Eksplorasi Detail)

Membutuhkan teknologi yang lebih sederhana s/d manual Biaya per satuan luas mahal Memerlukan waktu lebih lama

Tantangan eksplorasi endapan bahan galian Model struktur secara umum



Endapan mineral “permukaan” banyak yang sudah ditemukan sejak lama – Endapan mineral “bawah permukaan” masih terus di eksplorasi



• •

Peningkatan permintaan komoditas tambang yang tidak sebanding dengan laju penemuan baru. Dibutuhkan kebaruan teknologi Biaya eksplorasi yang sangat tinggi, khususnya aktifitas pemboran. Pemahaman sistem geologi secara komprehensif. Mineral Systems + Predictive Models + Vectors =

exploration success?

Integrasi citra setelit yang menunjukan tipe litologi yang berbeda dan struktur lipatan dan interpretasi struktur bawah permukaan

RS Environmental monitoring

Data topografi dengan remote sensing

Microwave Remote Sensing Analisis kimia dan mineralogi data bor

Ekstrasi struktur geologi berdasarkan data remote sensing dan modeling patahan 3D

Topographic change monitoring by D-InSAR Eksplorasi geofisika dan geokimia

Plant processing

Analisis hidrogeologi

Magma chamber

Data integration (Spatial database)

Optimal operation control system Analisis kimia dan mineralogi

Penginderaan jauh / inderaja (remote sensing)? Ilmu tentang memperoleh (acquiring), mengolah (processing), dan interpretasi gambar/citra dan data-data terkait yang didapatkan dari pesawat dan satelit, yang merekam hasil interaksi antara objek material dan radiasi elektromagnetik (Sabins, 1997).

Sensor Radiation Reflectance

Metode Ground Based

Observasi dan pengukuran Kondisi muka bumi

Sensor

Citra Metode Remote Sensing

Spasial database

Aplikasi remote sensing

(1) Analisis intensitas nilai refleksi material→ indentifikasi jenis material  Agrikultur (jenis tanaman), Geologi (jenis mineral dan

batuan) Tectonofisik (struktur geologi) Disaster prevention (analisis landslide) Lingkungan (ozone hole, water pollution, desertification)

(2) Analisis radians → Estimasi temperatur permukaan Monitoring sea temperature, urban environment, Meteorology

(3) Analisis intensitas back-scattering gelombang microwave → Estimasi surface roughness, surface movement Marine (gelombang), Meteorology (rainfall, angin), Soil (water content), Terrain (elevation), Disaster prevention (crustal movement with earthquake, topographic change with eruption and ground subsidence)

Interaksi gelombang elektromagnetik dengan material

Aplikasi Remote Sensing

Ozone Hole

Petroleum Exploration Water Resource Exploration

Land Slide Volcanic Activity

Mineral Resource Exploration

Typhoon & rainfall

Land Use Pattern Topography

Glacier & Drift Ice

Sea Pollution Vegetation Distribution

Sea Surface Temperature & Concentration of Vegetable Plankton

Contoh Satelit Pengamatan Bumi Middle to High Spatial Resolution Sensor pasif

LANDSAT (USA)

SPOT (France)

QuickBird (USA)

Specific Uses

Marine Observation Satellite MOS: (Japan)

NOAA (USA)

SAR Satellites Using Microwaves

ALOS (Japan)

-Cloud and humidity mapping -Sea surface temperature

ERS (Europe)

RADARSAT (Canada)

Sensor aktif

Soil

Emissivity properties Intensity

-launched in 2013-

Reflectance properties Intensity

Landsat 8

Plant

Water

Ultraviolet

Visible regions

wavelength

Infrared regions Multispectral Panchromatic

Land

http://landsat.usgs.g ov/ldcm_vs_previous

Sea

Atmosphere

Wavelength Bands of Satellites & Reflectance and Emissivity Properties

I. Optical Sensor Remote Sensing – prinsip dasar Definisi reflektans dan emissivity I

Reflectance=

Reflection Emittance

Rs

Rs I

Sensor

Emissivity =

Radiance energy from object Radiant energy from black body with the same temperature as object Function of

Sumber energi : matahari

temperature

<Planck’s law> & wavelength

Sumber energi : obyek

Bλ(T) = 0.5

3

10

Wavelength(μm)

1 2hc2 ・ exp hc / kT   1 λ5

Bλ(T) : Radiance of black body ( W・m-2・sr-1・μm-1 ) T : Temperature of black body (K) λ: wavelength (μm ) c : Velocity of light 2.998×108 (m・s-1 ) h : Plank’s constant 6.626×10-34 (J・s ) k : Boltzman’s constant 1.380×10-23 (J・K-1 )

Electromagnetic wave

Atom

Atom

Absorption of Electromagnetic Wave by Molecular Vibration

Reflectance Spectra of Clay Minerals

Visible 0.63 – 0.69 m (Band 3)

Visible 0.52 – 0.60 m (Band 2)

We can’t see in this wavelength.

Visible 0.45 – 0.52 m (Band 1)

Near infrared 0.75 – 0.90 m (Band 4)

Subscene Band Images of LANDSAT TM Sensor

Short Wave Infrared 1.55 – 1.75 m (Band 5)

Thermal Infrared 10.40 – 12.50 m (Band 6)

We can’t see in these wavelengths.

Short Wave Infrared 2.08 – 2.35 m (Band 7)

*Spatial Resolution Band 1, 2, 3, 4, 5, 7 → 30 m Band 6 → 120 m

Subscene Band Images of LANDSAT TM Sensor

Image acquisition date: May 16, 1996

Infrared Image (B: 5, G: 4, R: 7)

We can’t see in this wavelength.

False Color Composite Images of LANDSAT TM Images

True Color Image (B: 1, G: 2, R: 3)

Relative temperature of sea surface

Thermal Infrared Color Image (B: 5, G: 4, R: 6)

False Color Composite Images of LANDSAT TM Images

True Color Image (B: 1, G: 2, R: 3)

Natural Color Image (B: 1, G: 4, R: 3)Image

Infrared Color Image (B: 5, G: 4, R: 7) Thermal Infrared Image (B: 5, G: 4, R: 6)

Aplikasi analisis respons spektral untuk eksplorasi a

b

Illite-smectite Argillic alteration

Kaolinite

b)

A quartz vein showing mostly coarse-grained quartz layering with microgranule quartz. Altered tuff litic formed by fragments of andesitic, quarzitic, plagioclase, clay and opaque mineral. altered rocks

a

b

P-18 P-13 P-15

fresh quartz rocks 0.5

1.0

1.5 2.0 Wavelength (µm)

Rock samples

P-12

Reflectance (Offset for clarity)

Reflectance (Offset for clarity)

P-15 P-14 P-01

2.5

P-07

Quartz

Albite

Propylitic alteration

quartzmontmorillonitealbite

Reflectance (Offset for clarity)

a)

Montmorillonite

1 mm

1 mm

Calcite

Chlorite

Epidote

P-04 P-05 P-16

Quartz-illitekaolinite-montmorillonite 0.5

1.0

1.5 2.0 Wavelength (µm)

Soil samples

2.5

0.5

1.0 1.5 2.0 Wavelength (µm) The USGS and JPL spectral library

2.5

19

Remote sensing untuk eksplorasi mineral Sabins, F.F. (1999) Ore Geology Reviews 14, pp. 157-183.

Aplikasi remote sensing untuk eksplorasi sebagai berikut: (1) Pemetaan geologi dan struktur geologi (faults & fractures) yang berkaitan endapan mineral

A SPOT-Landsat TM ratio threshold merge of the area around the southern Chocolate Mountains illustrating extensional antiforms and areas of potential hydrothermal alteration highlighted in yellow.

Landsat TM 741 color composite image of the southern Colorado River illustrating extensional faults and the newly interpreted accommodation zone.

Image processing to emphasize the clay minerals which have reflectance absorption at 2 - 2.5 m.

Pemetaan eksplorasi:

Color Composite image using visible band data

Image processing to emphasize the ferrous oxide minerals which have reflectance absorption at 0.4 -1.2 m

(2) Memetakan alterasi hidrotermal berdasarkan respons spektral. - Perhitungan band ratio untuk identifkasi komponen alterasi mineral; iron minerals, & clays + alunite

Spectral reflectance curves are for vegetation and sedimentary rocks. Sabins, F.F. (1999) Ore Geology Reviews 14, pp. 157183.

Recognizing hydrothermally altered rocks at Goldfield mining district, NV. Color composite image of AVIRIS endmember abundance images. Illite=red, alunite=green, kaolinite=blue.

Map showing geology and hydrothermal alteration of Goldfield mining district, NV. Sabins, F.F. (1999) Ore Geology Reviews 14, pp. 157-183.

Recognition of hydrothermal clays and alunite from TM data, Goldfield mining district.

Field spectra averaged. of altered and unaltered rocks at Goldfield mining district.

Sabins, F.F. (1999) Ore Geology Reviews 14, pp. 157-183.

Reflectance spectra for halite (NaCl) and ulexite (NaCaB5O 8H2O). TM bands 4 and 7 are used to calculate 4/7 ratio image.

Model deposit Model skematik zona alterasi hidrotermal di daerah Gold Field Mine

Models of porphyry copper and related hydrothermally altered zone.

Sabins, F.F. (1999) Ore Geology Reviews 14, pp. 157183.

Satellite Image of Porphyry Copper Deposit

Visible and Near Infrared

Shortwave Infrared

ASTER image near the Escondida Cu-Au-Ag open-pit mine. Current capacity is 127,000 tons/day of ore. Escondida is related geologically to three porphyry bodies intruded along the Chilean West Fissure Fault System. The SWIR image highlights lithologic and alteration differences of surface units. http://earthobservatory.nasa.gov/IOTD/view.php?id=1000

Sabins, F.F. (1999) Ore Geology Reviews 14, pp. 157-183.

Laboratory spectra of alteration minerals in the 2.0 to 2.5 m band. Spectra are offset vertically. Note positions and bandwidths of the spectral bands recorded by AVIRIS and TM band 7.

Thermal emissivity spectra of igneous rocks with different silica and quartz contents. Arrows show centers of absorption bands. Note positions of spectral bands recorded by ASTER and TIMS.

Application of ASTER Data to Mineral Exploration Band 1 2 3 4 5 6 7 8 9 Wavelength (m) 0.52 - 0.60 0.63 - 0.69 0.76 - 0.86 1.600 - 1.700 2.145 - 2.185 2.185 - 2.225 2.235 - 2.285 2.295 - 2.365 2.360 - 2.430 Band 10 11 12 13 14 Wavelength (m) 8.125 - 8.475 8.475 - 8.825 8.925 - 9.275 10.25 - 10.95 10.95 - 11.65

Mineralogical indices for VNIR and SWIR bands

Thermal emissivity spectra of igneous rocks with different silica and quartz contents. Arrows show centers of absorption bands. Note positions of spectral bands recorded by ASTER and TIMS.

Pour and Hashim (2012) Ore Geology Reviews

Supervised classification using the USGS reference spectra overlying the ASTER false color image (6, 4, 2) in red, green, and blue and the mapped faults and lineaments. Amer et al. (2012) Ore Geology Reviews

Field & Laboratory Measurement of Spectra for Ground Truth of Remote Sensing Image

Laboratory spectrometer for samples

FieldSpec4 Target wavelength:0.485~2.5 m Examples of spectrometers available for ground truth

Fourier spectrometer FTIR Target wavelength:8~14 m

II. Microwave Remote Sensing & Synthetic Aperture Radar (SAR)

Terrain returns and image signatures for a pulse radar energy

Radar Equation

Pr (4 )3 R 4  =  j = Pt G 22 j

: back-scattering intensity R: range G: antenna gain  : wave length Pr: received power Pt: transmitted power

Relationship between surface roughness and scattering intensity of microwave

Frequency range L band: 1 to 2 GHz C band: 4 to 8 GHz X band: 8 to 12 GHz

Reflectance and primary interaction of X-, C-, L-, and P-band radars with forest canopies Purkis, S. J. and Klemas, V. V. (2011) Remote Sensing and Global Environmental Change, Wiley-Blackwell.

★Advantages of SAR (Synthetic Aperture Radar) Image

・Data can be acquired under any weather conditions, because microwaves can penetrate clouds. ・Interferograms can be produced by interferometric methods from two different overpasses ★Applications ・Generating Digital Elevation Model ・Tracking movements of major glaciers ・Estimating topographic changes with eruptions, earthquakes, and subsidence

Interferogram image of Antarctica Mt. Etna (Italy)

Topographic change pattern near the Nojima fault

(b)

(a) N

Perspective view from the northeast

InSAR for Producing DEM

20 44’9”W 7910’5”S

4500

2021’24”W 7823’32”S

4000

(m)

Relative elevation

1000

1500

2000

20 km

Perspective view from the southwest

500

1000

1500

1653’32”W 7914’6”S

2000

500

Oval feature

2500



3000

0

3500

(c)

2500

3000

3500

N

20 km

750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0 -50 -100 -150 -200

1630’28”W 7827’34”S

Koike et al. (2012) EPS

SAR-based Characterization of Distribution Pattern of Pyroclastic Flow Deposits at Mt. Merapi during the Past Ten Years

Intensity images of JERS-1 and RADARSAT-1 SAR data around Mt. Merapi at a descending

Examples of Merits

Conceptual model of a dipping conduit and three magma reservoirs formed at different depths to explain the cause of the temporal changes of the Pzones.

Crustal movement induced by the Sichuan Earthquake (2008) Source: Geographical Survey Institute

Crustal movement induced by the Tohoku-oki Earthquake in 2011

www.jishin.go.jp/main/eisei/eisei_furoku .pdf

Horizontal movements during 15 days by GPS showing the eastward movement of the whole Tohoku district.

http://www.gsi.go.jp/cais/topic110314-

Interferogram showing subsidence of the whole Tohoku district. Subsidence increases toward the epicenter.

Overviews of SAR data processing Observation system of JERS-1 SAR

・The sensor records the backscattering intensities from the surface materials.

・The back scattering depends on JERS-1 surface roughness and dielectric constant.  H

Frequency: 1.275 GHz (L band)



Wavelength : 23.5 cm

H: Orbit height (568 km)

i0

 : Slant range (709 km)  : Offnadir angle (35゜) i0: Incident angle (39゜) W: Scan width (75 km) D: Real aperture length (12 m) L: Synthetic aperture length (13.9 km)

L: Spatial resolution (18 m)

After RADARSAT INTERNATIONAL, “RADARSAT-2: The Next Generation in SAR Imaging”, Earth Observation Conference 2001, Tokyo Japan

Meaning of Polarimetry

HV: Volume scattering HH: Two reflections

Volume scattering

VV: Surface scattering

Surface scattering Two reflections

Color Composite of Polarimetric SAR Images of Mt. Sakurajima

X-band SAR image (9.55 GHz)

L-band SAR image (1.27 GHz)

R: HH, G:HV, B:VV

R: HH, G:HV, B:VV

Data set of Communication Research Laboratory/ NASDA SAR (Pi-SAR)

Applications of Interferometric Study Areas SAR to Topographic Mapping and Change Mt. Merapi, Indonesia Saga Plain

Mt. Hossyo

阿蘇中岳 100 km

The SAR data used are

Mt. Aso

・JERS-1 SAR (Japan) ・RADARSAT (Canada) Mt. Sakurajima

Application of interferometric SAR to DEM作成手 generating Digital Elevation Model



DEM produced from Interferometric SAR Mt. Sakurajima

Interferogram related to topography Phase unwrapping

Expanding the phase fluctuating periodically between 0 - 2 to continuous values

Application of Interferometric SAR to Extracting Topographic Changes of Active Volcanoes: (1) Case Study of Mt. Sakurajima Pair 1

Pair 2

Pair 4

Pair 3

1993 1993/6

1994/1

1993/ 5~10 Quiet period

1996/12 1997/1

1996/1

1995/ 8/ 23,24: Eruptions

1996/ 3: Frequent small eruptions

Increase of Pressure of the Aira Caldera 13030 3147

N

No. 1 2 3 4

MASTER 1993/6/7 1994/1/13 1996/1/31 1996/12/4

SLAVE 1994/1/13 1996/1/31 1996/12/4 1997/1/17

Days 220 748 308 44

B⊥ Coherence 453 0.214 35.0 0.231 220 0.312 18.6 0.616

Range

North summit Azimuth

Kagoshima City

Aira Caldera Mt. Sakurajima Kagoshima Bay 10 km

Osumi Peninsula

3129 13056

JERS-1/SAR

South summit 2km

ROW-79 ,PATH-248

Comparison of topographic change pattern obtained from interferometric SAR with the data of level surveying Vertical displacements based on level surveying (1991/12 ~ 1996/10)

Total topographic changes estimated from interferometric SAR (1994/1/13 ~ 1996/12/4) +5.88cm

N

0

‐5.88cm 2km

Mt. Sakurajima

SAR Interferometry for Land Subsidence Detection in Coal Mining Areas (1) Perski & Jura, ESA EOQ 63, pp. 25-29

Ground deformation map in Poland derived China from ERS pair: 3 Sep. 1993 – 8 Oct. 1993

Scheme showing interpretation of SAR interferogram in a subsidence trough

SAR Interferometry for Land Subsidence Detection in Coal Mining Areas (2)

Development of subsidence with coal mining at a depth of 300 to 450 m in Poland, detected from ERS SAR

Development of subsidence with coal mining in German, detected from ERS SAR (Spreckels et al., 2001)

Ground deformation map in northern derived China from ALOS pair: 15 Dec. 2007 – 30 Jan. 2008 overlaid on an optical image (Ge et al., The International Archives of the Photogrammetry, Remote Sensing and Spatial

Application of PSInSAR to Landslide

http://massa.geoazur.eu/interfero_30_11_2010/3_experiences_Piemont.pdf

Application of SAR image (8

Analisis Kelurusan (Lineament) Lineament…straight or slightly curved lines appearing on images surface

fault

Kelurusan yang dapat berhubungan dengan struktur patahan dapat diidentifikasikan langsung dari citra satelit.

Fault portions are selectively eroded and make valley features. ↓ Extraction of large change portions of brightness from satellite image

Contoh analisis kelurusan yang berhubungan struktur geologi

Distributions of three kinds of lineaments in the northern African Continent originated from the topography, gravity, and magnetic data and their superimposition on the geological map.

Overlay of the three kinds of lineaments onto the thickness of sedimentary rocks. Recent (19002006) earthquake epicenters are also shown on the composite map with their magnitudes.

Masoud and Koike (2011) ISPRS Journal of Photogrammetry and Remote Sensing

Perspective View of Estimated Fracture Planes from Lineaments and DEM Data 10 km 800 岳湯 Takenoyu

N

Fracture Zone Mt Waita 涌蓋山

九重町

1000 Otake 大岳

Fracture Zone

リニアメント1200

推定断裂面 八丁原 1400 一目山 1400 星生山

0 0

Temperature (C)

1800m 以上

1000m 2000

5 km

0 -1000 -2000 -3000

2

West

600m

1000

10

4

6

8

10 (km)

East

10 km

Assumed fracture zones & 1400m location of cross-section

Otake Power Station

300

0

1600

3D temperature distribution and fluid flows calculated from FEM

Light Detection and Ranging (LiDAR)

Sensor pasif Radar: - Memakai gelombang microwave - Menentukan jarak dan sudut suatu benda berdasarkan posisinya LiDAR: - Memakai optical laser light - Menentukan jarak suatu benda

Sensor aktif

Mengapa memilih teknologi LiDAR? • Pemetaan dengan LiDAR jauh lebih aman dan jauh lebih cepat daripada metode pemetaan konvensional. • Mendukung proses kegiatan pertambangan secara cepat • Ideal untuk analisis temporal perubahan morfologi. • Dapat diintegrasikan dengan database lain.

Prinsip dasar LiDAR

Terrestrial Laser Scanning (TLS)

Terrestrial Laser Scanning (TLS) – prinsip kerja

Airborne Laser Terrain Mapper – ALTM 3100

• • • • • • •

Up to 100,000 pengukuran/detik Cocok untuk segala jenis pesawat Mengukur intensitas IR, x, y,& z Resolusi vertikal: ~ 5 – 10 cm Resolusi horizonal: ~ 15 cm Ketinggian jelajah – 3 km Luasan daerah – 50 km2/jam

Rapid 3D digital elevation data

Metodologi

Metodologi • Pengukuran dan output – – – – –

Range Scan angle Posisi sensor (geodetic reference) Orientasi sensor Amplitude signal (intensitas)

• Pengolahan data – Perhitungan koordinat x, y, z – Analisis filtering dan fungsi-fungsi lain Teknis: • Download data dari hard drive • Download GPS data dari sistem wahana (airborne) dan base-station • Pengolahan dengan software aplikasi

Aplikasi LiDAR • Visualisasi permukaan bumi: Digital terrain model (DTM) & Digital elevation model (DEM)

Gray scale intensity image

Digital elevation model

Color coded elevation intensity image

Active laser photo

Keuntungan LiDAR • LiDAR manggunakan gelombang aktif sehingga akuisisi laser pun dapat dilakukan malam hari. • Kecepatan akusisi data. • Kerapatan point/titik ground yang dihasilkan per 1 meter sq minimal 1 point tapi bisa sampai 9 point tergantung permukaan dan tinggi terbang (metode akuisisi) serta FoV (Field of View/ sudut pandang sensor ke bumi). • Besaran pulse alat tidak begitu mempengaruhi, saat ini sudah ada vendor yang mampu membuat alat LiDAR dengan pulse diatas 500kHz, pulse besar ini akan maksimal jika pengambilan/akuisisi data dengan pesawat bisa “terbang tinggi”. Untuk wilayah Indonesia negera tropis dimana awan berada di ketinggian 1000 s/d 1500 meter, maka pesawat akan terbang di bawah awan. Untuk terbang dengan ketinggian dibawah 1000 meter, adalah cukup menggunakan pulse 75120 kHz dan FoV 18 s/d 25 deg. • Karena menggunakan pesawat udara, akses lebih mudah tentunya untuk mengakuisisi/mencapai ke setiap bagian site. • Hanya butuh 1 titik control tanah (BM) untuk radius terbang akuisisi 30 sd 40 km dari titik control tanah tersebut. • Biaya lebih efisien dan efektif.

Kekurangan LiDAR • Tidak bekerja maksimal di daerah yang tertutup awan/kabut • Pulse tidak dipantulkan dengan baik jika objek-objek pantul basah (berair). Karena pulse Topographic LiDAR akan diserap / hilang jika mengenai air seperti sungai atau pemukaan yang masih basah akhibat embun atau hujan. LiDAR yang digunakan untuk Hydrographic berbeda dengan Topo, untuk Hydro dikenal dengan nama SHOALS atau singkatan dari Scanning Hydrographic Operational Airborne LiDAR Survey. System ini mampu mengakuisisi permukaan air dan kedalaman air 50 s/d 60 meter dari permukaan air. • Ketidakmampuan untuk penetrasi daerah tertutup vegetatsi lebat. • Akurasi data LiDAR atau ketelitiaan yang dihasilkan LiDAR bervariatif, sangat bergantung pada kondisi permukaan. Untuk area terbuka keras ketelitan bisa mencapai dibawah 5 cm. Ketelitian Horizontal 2 kali s/d 5 kali lebih “jelek” dari dari ketelitian Vertical.

View more...

Comments

Copyright © 2017 DATENPDF Inc.